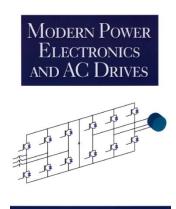
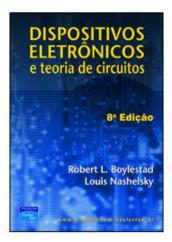
Centro Federal de Educação Tecnológica de Santa Catarina
Departamento Acadêmico de Eletrônica
Conversores Estáticos

Semicondutores Aplicados a Conversores CC-CA Módulos de Potência e Drivers


Prof. Clóvis Antônio Petry.

Florianópolis, junho de 2008.


Bibliografia para esta aula

Capítulo 10: Inversores

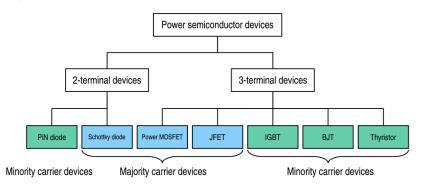
1. Semicondutores aplicados aos conversores CC-CA.

BIMAL K. BOSE

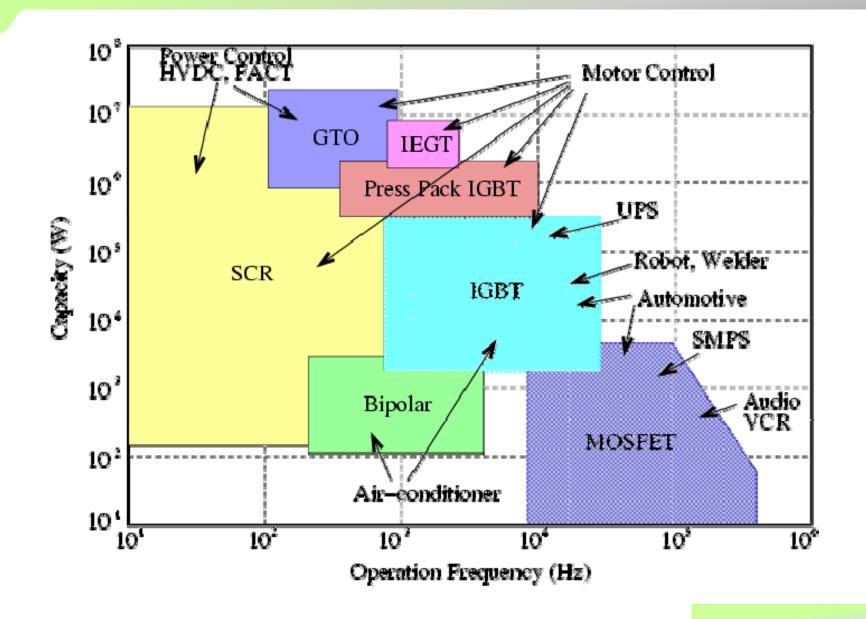
Eletrônica de Potência

www.cefetsc.edu.br/~petry

Nesta aula


Semicondutores aplicados a conversores CC-CA:

- 1. Introdução;
- 2. MOSFET de potência;
- 3. IGBT;
- 4. Módulos de potência;
- 5. Driver de acionamento de MOSFET e IGBT;
- 6. Bootstrap.

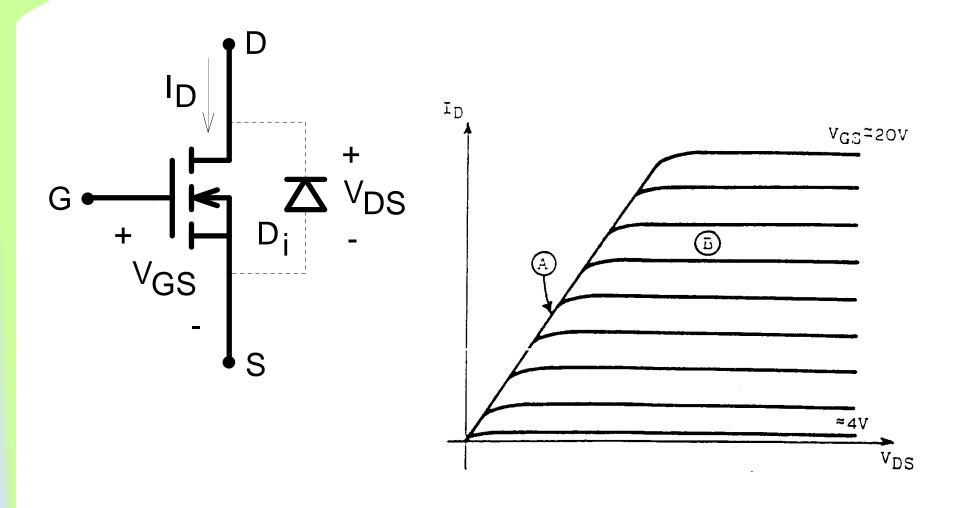

Semicondutores para eletrônica de potência

Semicondutores utilizados em eletrônica de potência:

- Diode
- Thyristor or silicon-controlled rectifier (SCR)
- Triac
- Gate turn-off thyristor (GTO)
- Bipolar junction transistor (BJT or BPT)
- Power MOSFET
- Static induction transistor (SIT)
- Insulated gate bipolar transistor (IGBT)
- MOS-controlled thyristor (MCT)
- Integrated gate-commutated thyristor (IGCT)

Semicondutores para eletrônica de potência

Semicondutores para eletrônica de potência



MOSFET de potência

MOSFET de potência

Classificação das perdas:

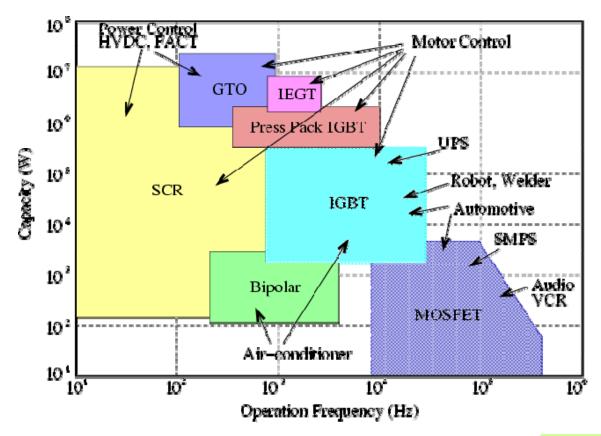
1. Condução;

$$P_{cond} = \frac{t_{on}}{T} \cdot r_{ds(on)} \cdot i_{d(on)}^{2}$$

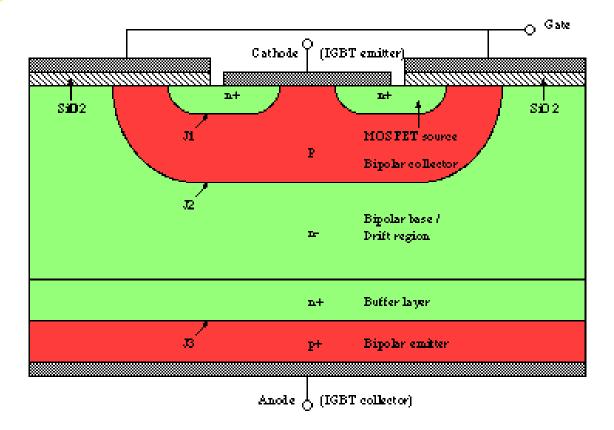
- 2. Comutação:
 - Entrada em condução e bloqueio;

$$P_{com} = \frac{f}{2} \left(t_r + t_f \right) \cdot i_{d(on)} \cdot v_{ds(off)}$$

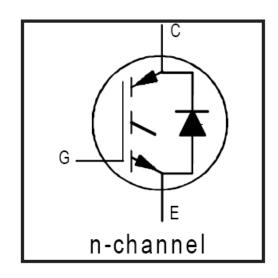
Onde:

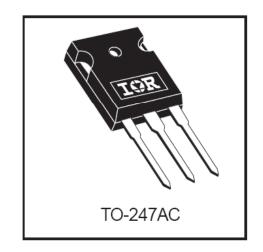

$$t_f \cong t_{on}$$
 $t_r \cong t_{off}$

$$t_r \cong t_{off}$$


MOSFET de potência

Quando usar MOSFET:


- 1. Freqüências altas (acima de 50 kHz);
- 2. Tensões muito baixas (< 500 V);
- 3. Potências baixas (< 1 kW).



IGBT

IGBT – Insulated Gate Bipolar Transistor

IGBT

Classificação das perdas:

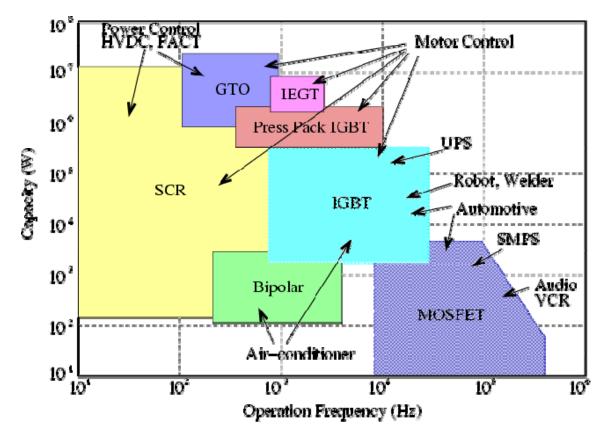
1. Condução;

$$P_{cond} = (i_C \cdot V_{CEsat} + i_B \cdot V_{BEsat}) \cdot t_{on} \cdot f$$

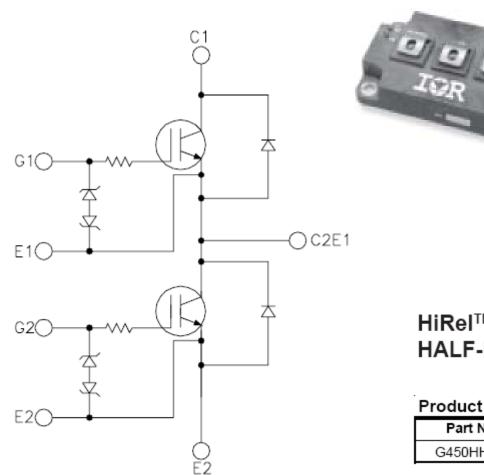
- 2. Comutação:
 - Entrada em condução e bloqueio;

$$P_{com} = \frac{1}{2} \left(t_r + t_f \right) \cdot I \cdot E \cdot f$$

Detalhamento do cálculo de perdas



IGBT


Quando usar IGBT:

- 1. Freqüências baixas (menor que 50 kHz);
- 2. Tensões altas (> 500 V);
- 3. Potências altas (> 1 kW).

BJT x MOSFET x IGBT

	MOSFET	IGBT	BJT	
Tipo de comando	Tensão	Tensão	Corrente	
Potência do comando	Mínima	Mínima	Grande	
Complexidade do comando	Simples	Simples	Média	
Densidade de corrente	Elevada em baixas tensões e Baixa em altas tensões	Muito elevada	Média	
Perdas de comutação	Muito baixa	Baixa para Média	Média para Alta	

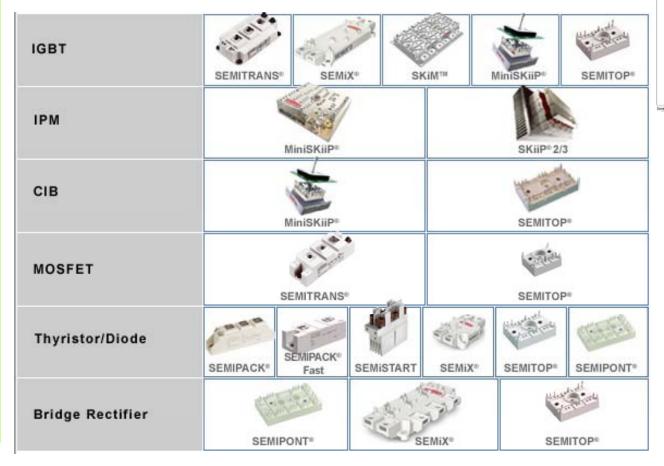
www.irf.com

HiReI™ INT-A-Pak 2, PLASTIC HALF-BRIDGE IGBT MODULE

Product Summary

Part Number	V _{CE}	Ic	V _{CE(SAT)}
G450HHBK06P2	600∨	450A	1.8

IRAMS06UP60A •MOTION [™] Series 6A, 600V



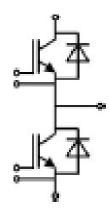
VRW (14) 5 Red & Re3 \$ Re5 \$ VB2 (4) V, VS2 (3) W, V\$3 (2) 22 25 20 29 28 17 10000 Driver IC 0.000 04 HIM1 (15) HB12 (16) HHO HIM3 (17) UND UND F TRUP EN BON 198 COM LIN1 (18) LDN2 (19) LDN3 (20) T/L_{max} (21) V00 (22)

W-(10) 4

International Rectifier

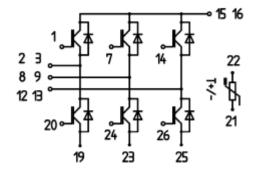
www.irf.com

www.semikron.com.br



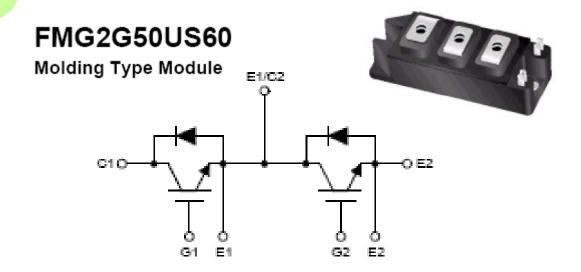
SKM 50GB063D

Absolute	Absolute Maximum Ratings T _c = 25 °C, unless otherwise specific				
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	70	Α	
		T _{case} = 75 °C	50	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		100	Α	
V _{GES}			± 20	V	
t _{psc}	$V_{CC} = 300 \text{ V}; V_{GE} \le 20 \text{ V};$ $V_{CES} < 600 \text{ V}$	T _j = 125 °C	10	μs	
Inverse D	iode			l	
I _F	T _j = 150 °C	T _{case} = 25 °C	75	Α	
		T _{case} = 80 °C	50	Α	
I _{FRM}	I _{FRM} =2xI _{Fnom}		100	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	440	Α	
Module					
I _{t(RMS)}			200	Α	
T_{vj}			- 40 + 150	°C	
T _{stg}			- 40 + 125	°C	
V _{isol}	AC, 1 min.		2500	٧	



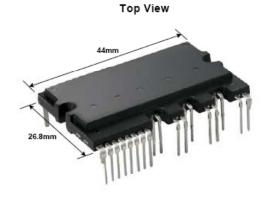
www.semikron.com.br

SK50GD066ET


Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise sp	ecified
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _s = 25 °C	57	Α
		T _s = 70 °C	45	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	Α
V _{GES}			± 20	V
t _{psc}	$V_{CC} = 360 \text{ V}; V_{GE} \le 20 \text{ V};$	T _j = 125 °C	6	μs
	Vces < 600 V			
Inverse Di	iode			
I _F	T _j = 175 °C	T _s = 25 °C	56	A
		T _s = 70 °C	44	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		60	Α
Module				
I _{t(RMS)}				Α
T _{vj}			-40 +1 50	°C
T _{stg}			-40 +1 25	°C
V _{isol}	AC, 1 min.		2500	V

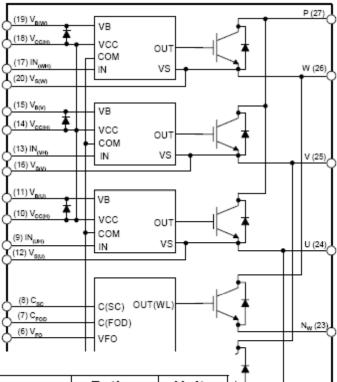
www.semikron.com.br

www.fairchildsemi.com



Absolute Maximum Ratings To = 25°C unless otherwise noted

Symbol	Description		FMG2G50US60	Units
V _{CES}	Collector-Emitter Voltage		600	V
V _{GES}	Gate-Emitter Voltage		±20	V
l _C	Collector Current	@ T _C = 25°C	50	A
I _{CM (1)}	Pulsed Collector Current		100	A
I _F	Diode Continuous Forward Current	@ T _C = 100°C	50	A
I _{FM}	Diode Maximum Forward Current		100	A
T _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us
P _D	Maximum Power Dissipation	@ T _C = 25°C	250	W
TJ	Operating Junction Temperature		-40 to +150	°C
T _{stg}	Storage Temperature Range		-40 to +125	°C
V _{iso}	Isolation Voltage	@ AC 1minute	2500	V
Mounting	Power Terminals Screw : M5		2.0	N.m
Torque	Mounting Screw : M5		2.0	N.m


FSBF10CH60BT Smart Power Module

Bottom View

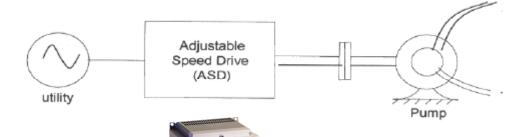
N_y (22)

N_u (21)

Inverter Part

Symbol	Parameter	Conditions	Rating	Units
V_{PN}	Supply Voltage	Applied between P- N _U , N _V , N _W	450	٧
V _{PN(Surge)}	Supply Voltage (Surge)	Applied between P- N _U , N _V , N _W	500	٧
V _{CES}	Collector-emitter Voltage		600	٧
± l _C	Each IGBT Collector Current	T _C = 25°C	10	Α
± I _{CP}	Each IGBT Collector Current (Peak)	T _C = 25°C, Under 1ms Pulse Width	20	Α
Pc	Collector Dissipation	T _C = 25°C per One Chip	20	W
T _{J(Power chips)}	Operating Junction Temperature	(Note 1)	-40 ~ 150	°C

Driver ou Drive


Drive

Driver

Para acionamento de motores

Para acionamento semicondutores

IN+ 6 IN-**FAN3100** AGND 5 PGND Single 2A High-Speed, Low-Side Gate Driver 4 OUT VDD 3 VDD 1 **UVLO** V_{DD_OK} 100kΩ ≥ PWM?? IN+ 3 5 OUT 100kΩ < 100kΩ IN-2 GND

www.fairchildsemi.com

SEMIDRIVER™

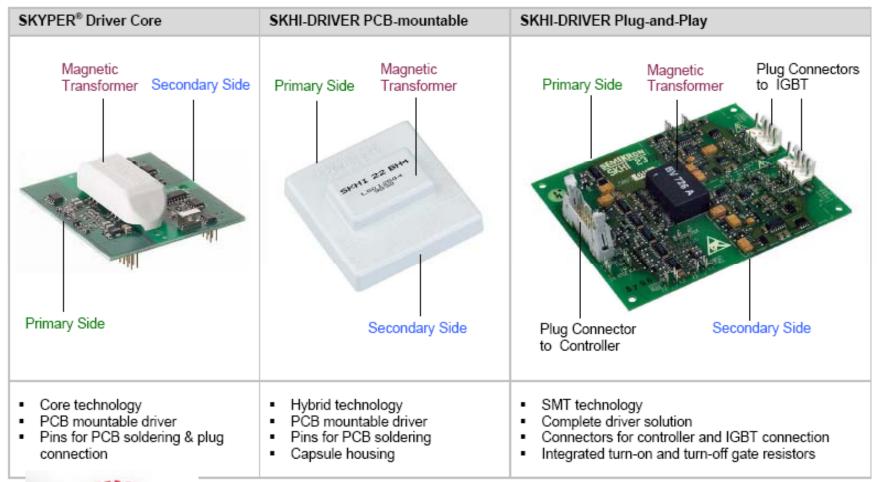
Туре	Number of Channels	V _{CE} max. V	Gate voltage V	Output peak current A	-	Switching frequency kHz	Isolation voltage kV	dv/dt max. kV/□s
SKYPER™ D	river (Cor	е					
SKYPER 032 (R)	2	1700	+15/-7	15	2,5	50	4	50
SKYPER032PRO (R)	2	1700	+15/-7	15	6,3	50	4	50

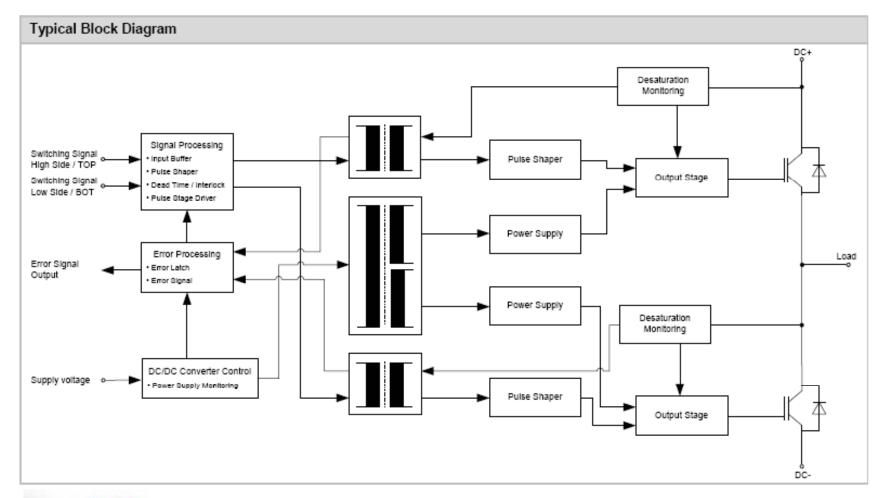
SKHI-DRIVER PCB-mountable

SKHI□21A (R)	2	1200	+15/0	8	4
SKHI0220A0/0B (R)	2	1200	+15/-7	8	4
SKHI0220A / B H4 (R)	2	1700	+15/-7	8	4
SKHI□24 (R)	2	1700	+15/-8	15	5
SKHI□61 (R)	6	900	+15/- 6,5	2	1
SKHI□71 (R)	7	900	+15/- 6,5	2	1

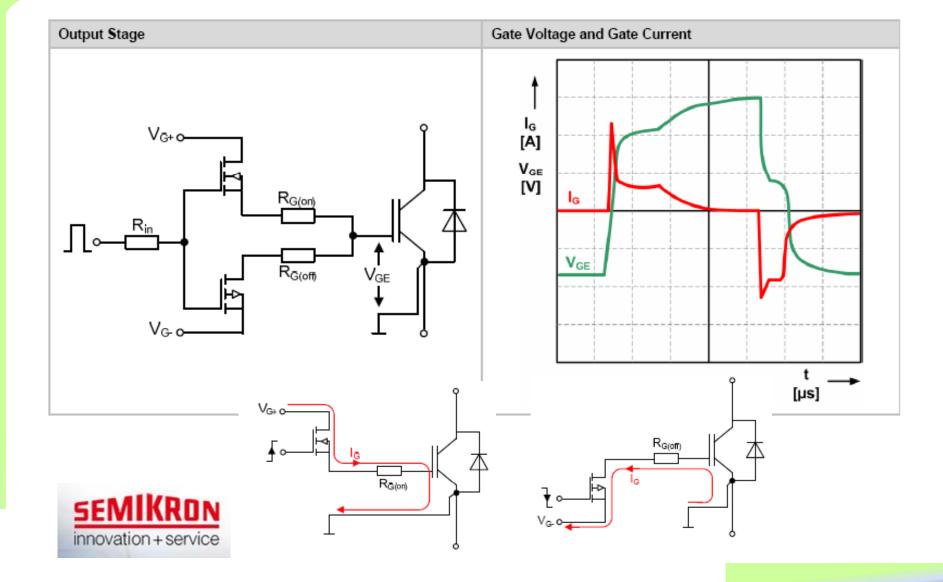
SKHI-DRIVER Plug-and-Play

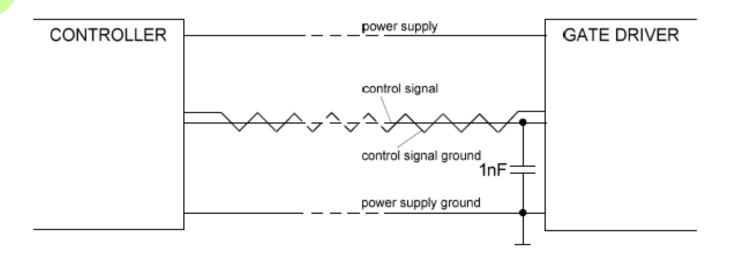
		•		
SKHI 10/12 (R)	1	1200 +15	/-8 8	9,6
SKHI010/17 (R)	1	1700 +15	/-8 8	9,6
SKHI023/12 (R)	2	1200 +15	/-8 8	4,8
SKHI023/17 (R)	2	1700 +15	/-8 8	4,8
SKHID26W,DSKHID26F*	2	1600 +15	/-8 8	10
SKHI027W	2	1700 +15	/-8 30	30
SKHIT001 (R)	3		-	-

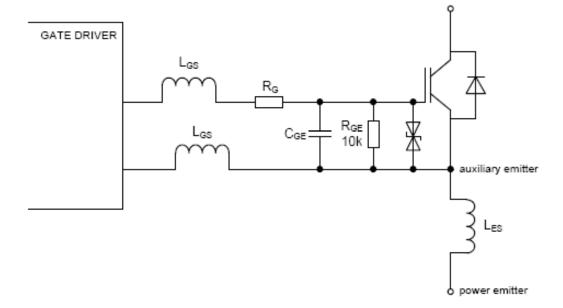


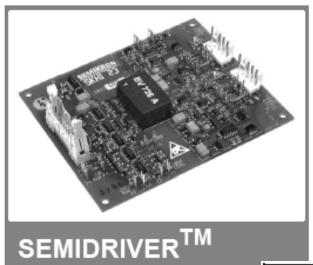

75

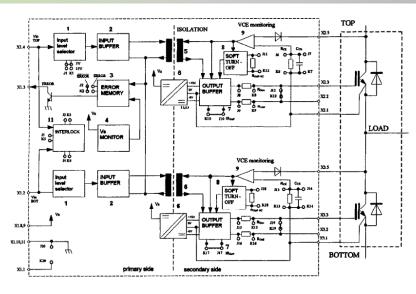
2,5

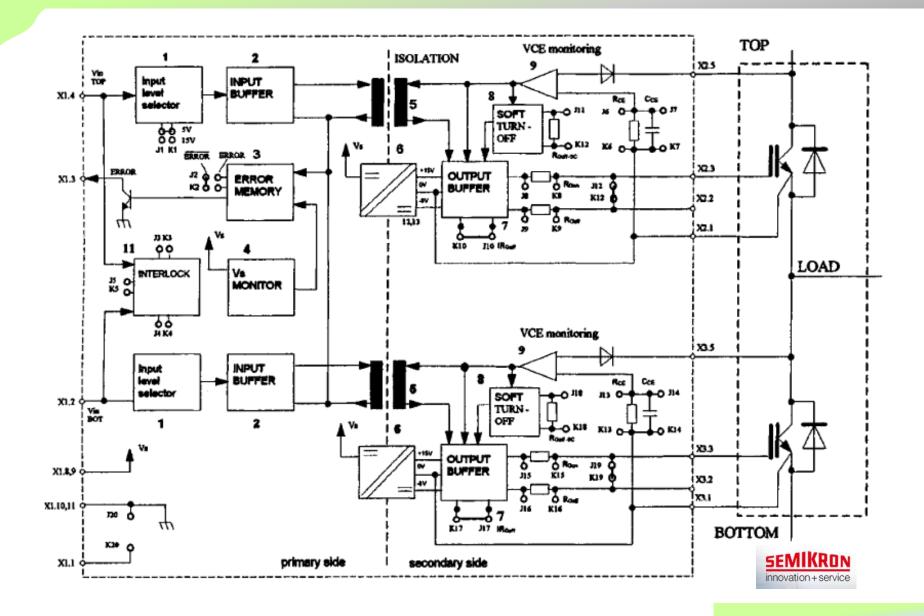

10

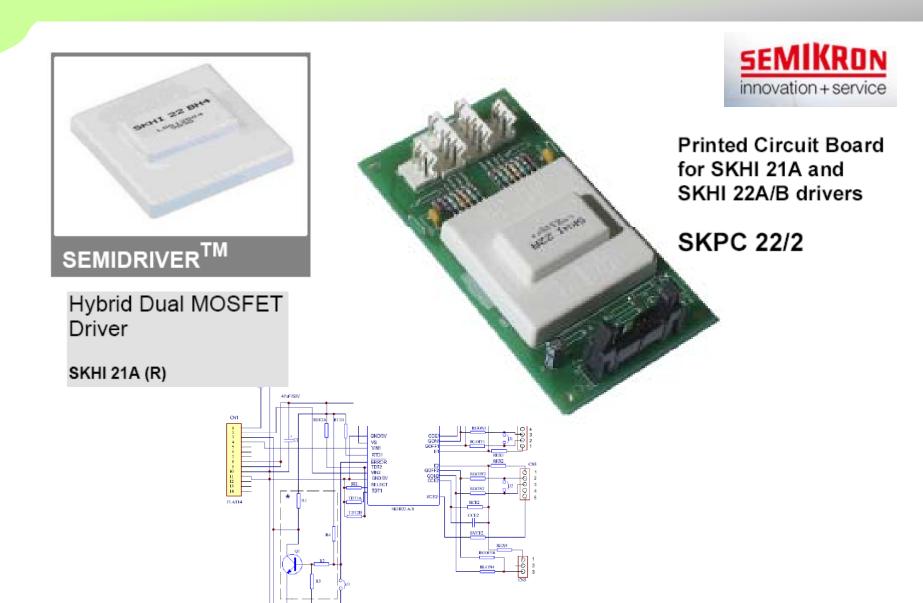


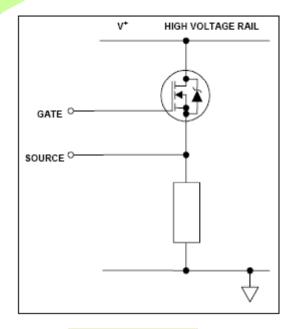




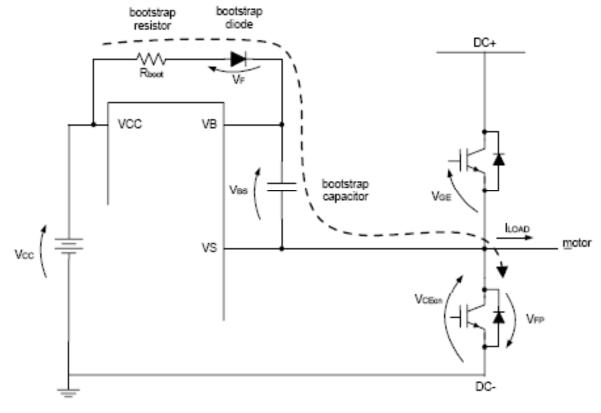


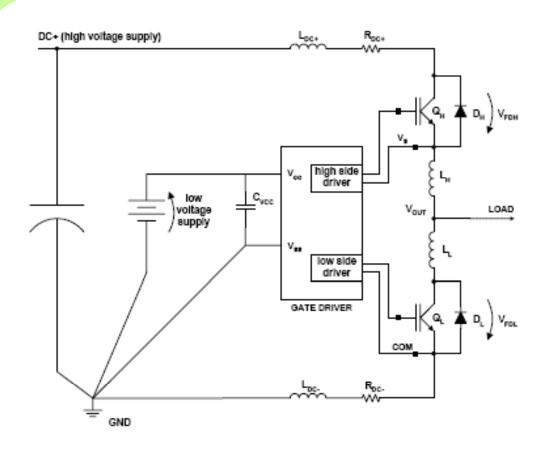


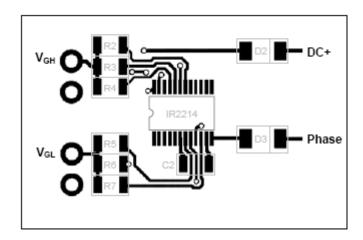

Medium Power Double IGBT Driver

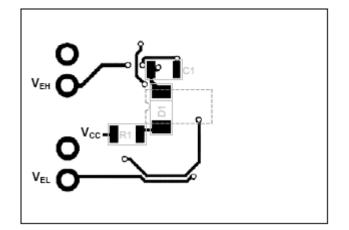

SKHI 23/12 (R)

Absolute	Maximum Ratings T	_a = 25 °C, unless otherwise sp	ecified
Symbol	Conditions	Values	Units
V _s	Supply voltage primary	18	V
V _{iH}	Input signal voltage (HIGH) (for 15 V and 5 V input level)	V _S + 0,3	V
Iout _{PEAK}	Output peak current	± 8	Α
lout _{AV}	Output average current	± 50	mA
V _{CE}	Collector emitter voltage sense	1200	V
dv/dt	Rate of rise and fall of voltage (secondary to primary side)	75	kV/µs
V _{isol IO}	Isolation test volt. IN-OUT (2 sec. AC)	2500	V
R _{Gon min}	minimal R _{Gon}	2,7	Ω
R _{Goff min}	minimal R _{Goff}	2,7	Ω
Q _{out/pulse}	charge per pulse	4,8	μC
T _{op}	Operating temperature	- 25 + 85	°C
T _{stg}	Storage temperature	- 25 + 85	°C

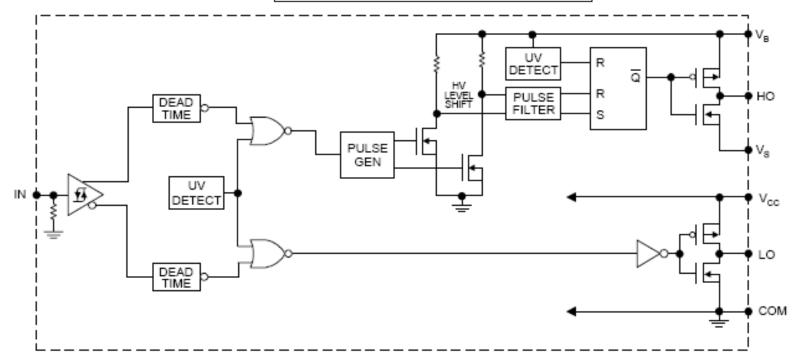




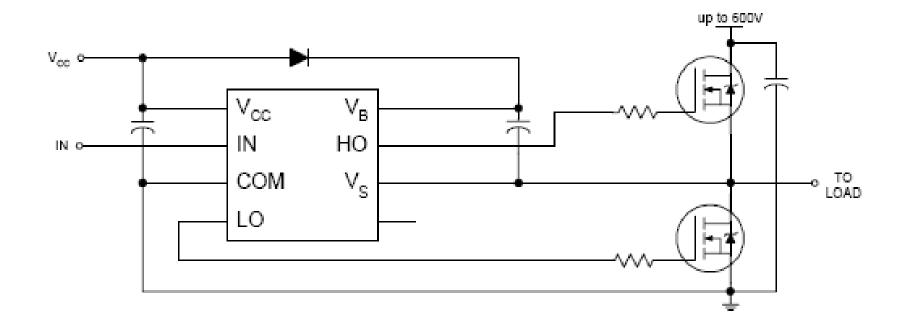


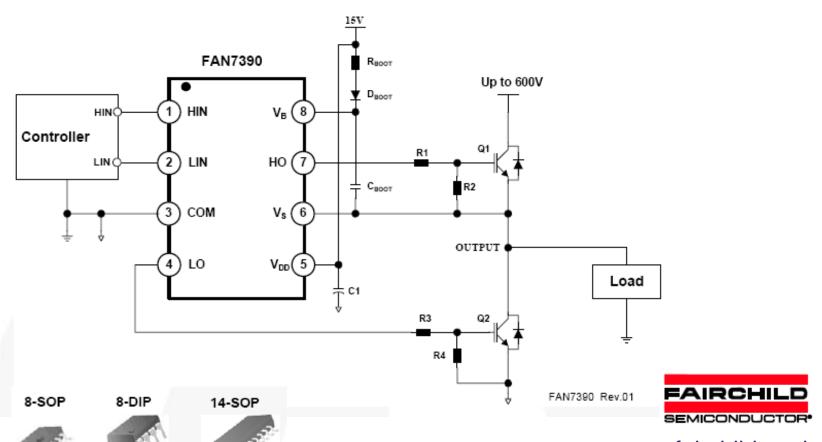

Problema

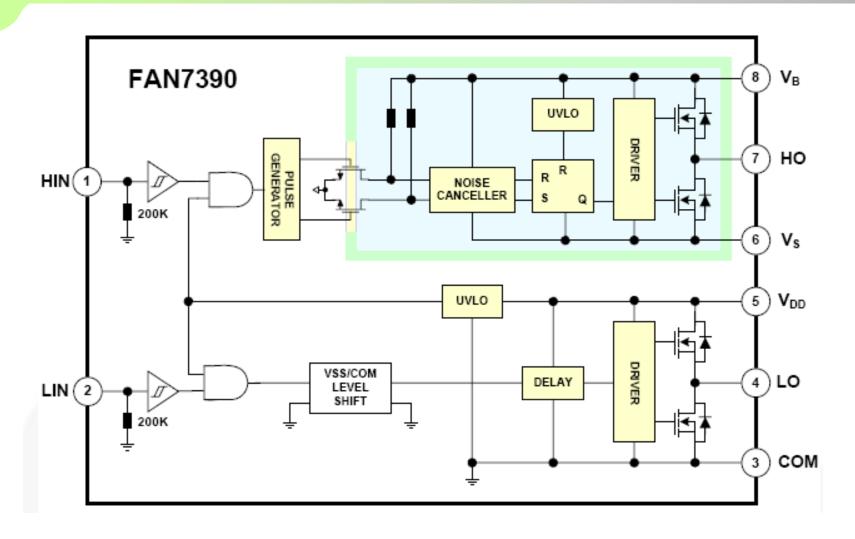
Princípio do Bootstrap


IR2111(S)&(PbF) HALF-BRIDGE DRIVER

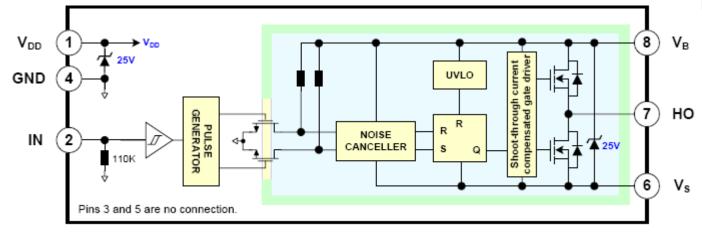
 $\begin{array}{ccc} V_{OFFSET} & 600 V \text{ max.} \\ I_{O}\text{+/-} & 200 \text{ mA / } 420 \text{ mA} \\ V_{OUT} & 10 - 20 V \\ t_{on/off} \text{ (typ.)} & 750 \& 150 \text{ ns} \\ \end{array}$ Deadtime (typ.) 650 ns

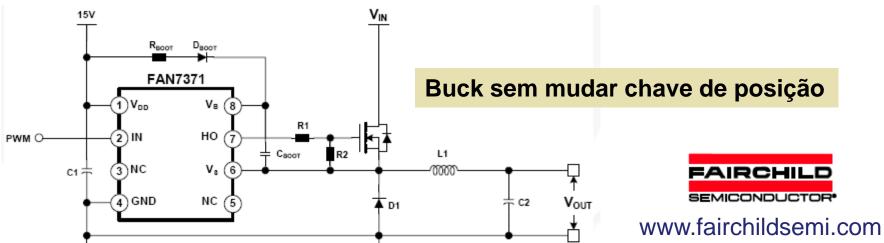



8-Lead PDIP 8-Lead SOIC

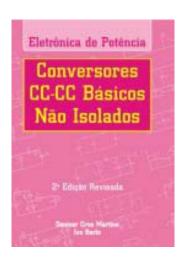

IR2111(S)&(PbF) HALF-BRIDGE DRIVER

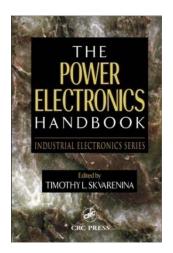
FAN7390 High-Current, High & Low-Side, Gate-Drive IC

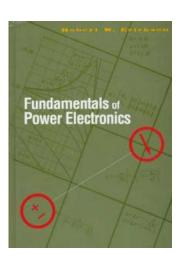

www.fairchildsemi.com



FAN7371 High-Current High-Side Gate Drive IC




Próxima aula


Capítulo 10: Inversores

1. Conversores CC-CA monofásicos.

www.cefetsc.edu.br/~petry