CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO DE ELETRÔNICA

Conversores Estáticos (ELP - 20306)

<u>AULA LAB 03</u> SIMULAÇÃO DE CIRCUITOS RETIFICADORES TRIFÁSICOS

1 INTRODUÇÃO

Esta aula de laboratório tem por objetivo consolidar os conhecimentos obtidos nas aulas teóricas referentes ao estudo de retificadores trifásicos controlados e não-controlados. Para tanto, será usado o simulador de circuitos Orcad 9.2 Lite visando confrontar as expressões matemáticas convencionais com os resultados de simulação obtidos via simulador.

Em síntese, objetiva-se:

- Retificadores trifásicos com ponto médio (meia onda):
 - Não-controlado;
 - Controlado.
- Retificadores trifásicos ponte completa (ponte de Graetz):
 - Não-controlado.
- Estudo da comutação.

2 RETIFICADORES TRIFÁSICOS COM PONTO MÉDIO

Retificador trifásico não-controlado de meia onda

Simule o circuito mostrado na figura 1, inicialmente com carga resistiva, anotando os resultados na tabela 2. Em seguida altere a carga para RL e anote os resultados na tabela 2, conforme mostrado na figura 2.

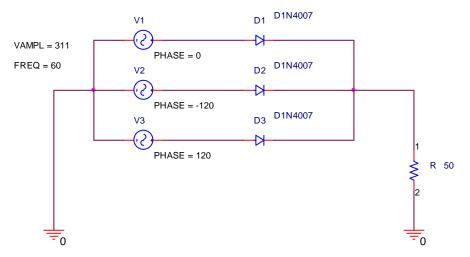


Figura 1 – Circuito para simulação.

Tabela 1 – Retificador trifásico não-controlado de meia onda com carga resistiva.

Parâmetro	Valor
Tensão média na saída	
Corrente média na carga	
Potência dissipada em um dos diodos	
Ângulo de entrada em condução do diodo $D_1(\alpha)$	
Ângulo de condução do diodo $D_1(\beta)$	
Características da carga	$R = 50 \Omega$

Tabela 2 – Retificador trifásico não-controlado de meia onda com carga RL.

Parâmetro	Valor
Tensão média na saída	
Corrente média na carga	
Tensão reversa no diodo	
Ângulo de entrada em condução do diodo D_1 (α)	
Ângulo de condução do diodo D_1 (β)	
Características da carga	$R = 50 \Omega e L = 100 mH$

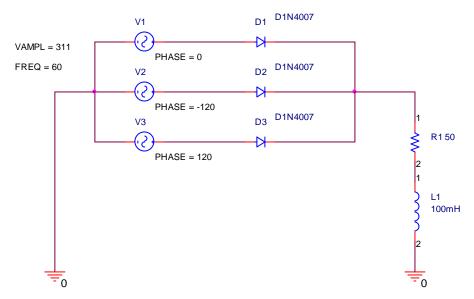


Figura 2 – Circuito para simulação.

Retificador trifásico controlado de meia onda

Simule o circuito mostrado na figura 3, inicialmente com carga resistiva, anotando os resultados na tabela 3. Em seguida altere a carga para RL e observe as diferenças no funcionamento da estrutura.

Tabela 3 – Retificador trifásico controlado de meia onda com carga resistiva.

Parâi	netro	Valor
$\alpha = 30^{\circ}$		
$\alpha = 90^{\circ}$	Tensão média na saída	
$\alpha = 120^{\circ}$		
Ângulo de condução do tiristor T_1 (β) p/ $\alpha = 90^\circ$		
Característi	cas da carga	$R = 50 \Omega$

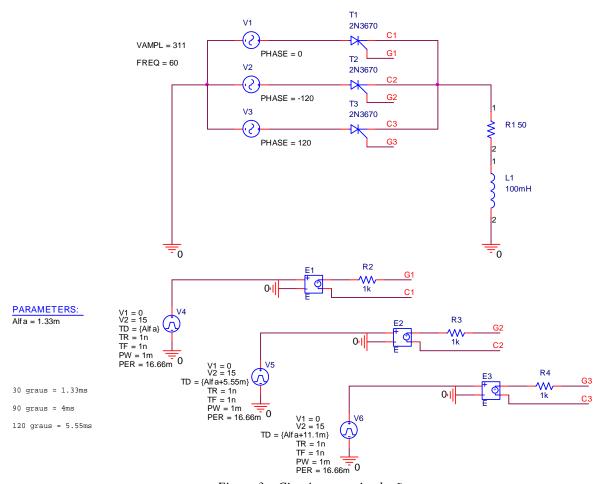


Figura 3 – Circuito para simulação.

Tabela 4 – Retificador trifásico controlado de meia onda com carga RL.

Parâi	metro	Valor
$\alpha = 30^{\circ}$		
$\alpha = 90^{\circ}$	Tensão média na saída	
$\alpha = 120^{\circ}$		
Ângulo de condução do tiristor T_1 (β) p/ $\alpha = 90^\circ$		
Característi	cas da carga	$R = 50 \Omega e L = 100 mH$

3 RETIFICADORES TRIFÁSICOS PONTE COMPLETA

Retificador trifásico não-controlado ponte completa

Simule o circuito mostrado na figura 4, inicialmente com carga resistiva, anotando os resultados na tabela 5. Em seguida altere a carga para RL e anote os resultados na tabela 6.

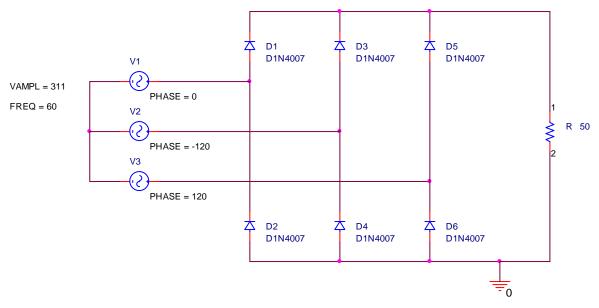


Figura 4 – Circuito para simulação.

Tabela 5 – Retificador trifásico não-controlado de onda completa com carga resistiva.

Parâmetro	Valor
Tensão média na saída	
Corrente média na carga	
Potência dissipada em um dos diodos	
Ângulo de entrada em condução do diodo D_1 (α)	
Ângulo de condução do diodo D_1 (β)	
Características da carga	$R = 50 \Omega$

Tabela 6 – Retificador trifásico não-controlado de onda completa com carga RL.

Parâmetro	Valor
Tensão média na saída	
Corrente média na carga	
Tensão reversa no diodo	
Ângulo de entrada em condução do diodo D_1 (α)	
Ângulo de condução do diodo D_1 (β)	
Características da carga	$R = 50 \Omega e L = 100 mH$

4 ESTUDO DA COMUTAÇÃO

Simule o circuito mostrado na figura 5 e anote os resultados na tabela 7.

Tabela 7 – Estudo da comutação.

Parâ	metro	Valor
$L_c = 1 \mu H$		
$L_c = 100 \mu H$	Tensão média na saída	
$L_c = 1 \text{ mH}$		
Característi	cas da carga	$R = 50 \Omega e L = 500 mH$

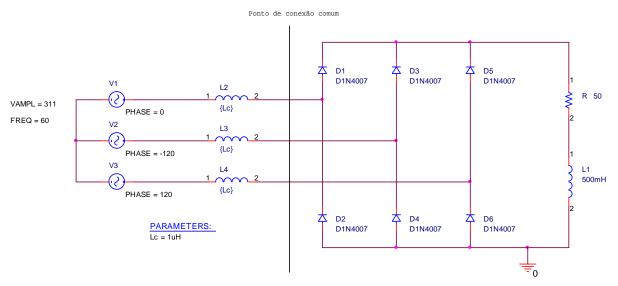


Figura 5 – Circuito para simulação.

- a) As tensões na entrada do retificador sofrem influência da indutância de comutação (parasita)?
- b) O que ocorreu com a tensão média na saída?
- c) Se outras cargas estiverem conectadas no ponto de conexão comum (PCC), o retificador ponte completa pode afetar o funcionamento destas cargas?