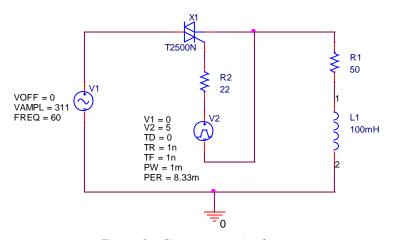
CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

Conversores Estáticos (ELP - 20306)

<u>AULA LAB 05</u> SIMULAÇÃO DE CONVERSORES CA-CA DE BAIXA FREQÜÊNCIA

1 INTRODUÇÃO


Esta aula de laboratório tem por objetivo consolidar os conhecimentos obtidos nas aulas teóricas referentes ao estudo de conversores CA-CA monofásicos e trifásicos, principalmente os de baixa freqüência de comutação. Para tanto, será usado o simulador de circuitos Orcad 16 Demo visando confrontar as expressões matemáticas convencionais com os resultados de simulação obtidos via simulador.

Em síntese, objetiva-se:

- Gradador monofásico:
 - Carga resistiva;
 - Carga RL.
- Controle por ciclos inteiros:
 - Funcionamento normal;
 - Efeito na rede.
- Gradador monofásico de baixo custo.

2 GRADADOR MONOFÁSICO

Simule o circuito mostrado na figura 1, inicialmente com carga resistiva, anotando os resultados na tabela 1. Em seguida altere a carga para RL e anote os resultados na tabela 2, conforme mostrado na figura 1.

 $Figura\ 1-Circuito\ para\ simulação.$

Tabela 1 – Gradador monofásico com carga resistiva.

Tubela 1 Gradador monorasico com carga resistiva.				
Parâmetro		Valor		
$\alpha = 0^{\circ}$				
$\alpha = 90^{\circ}$	Tensão eficaz na saída			
$\alpha = 151^{\circ}$				
Ângulo da corrente na fonte para $\alpha = 90^{\circ}$				
THD da corrente na fonte (%) para $\alpha = 90^{\circ}$				
Fator de potência na fonte para $\alpha = 90^{\circ}$				
Características da carga		$R = 50 \Omega e L = 100 nH (L = 0)$		

Tabela 2 – Gradador monofásico com carga RL.

Parâmetro		Valor
$\alpha = 0^{\circ}$		
$\alpha = 90^{\circ}$	Tensão eficaz na saída	
$\alpha = 151^{\circ}$		
Ângulo da corrente na fonte para $\alpha = 90^{\circ}$		
THD da corrente na fonte (%) para $\alpha = 90^{\circ}$		
Fator de potência na fonte para $\alpha = 90^{\circ}$		
Características da carga		$R = 50 \Omega e L = 100 \text{ mH}$

O fator de potência é calculado pela expressão abaixo, considerando que a tensão da fonte é livre de harmônicas:

$$FP = \frac{\cos(\theta_1)}{\sqrt{1 + THD^2}}$$

Onde:

- θ_1 = ângulo de deslocamento da corrente na fonte em relação à tensão da fonte;
- THD = taxa de distorção harmônica da corrente na fonte.

3 CONTROLE POR CICLOS INTEIROS

Simule o circuito mostrado na figura 2 anotando os valores na tabela 3. Atente para o fato da freqüência da rede ter sido alterada para 50 Hz, visando facilitar os valores a serem inseridos no circuito de comando do Triac.

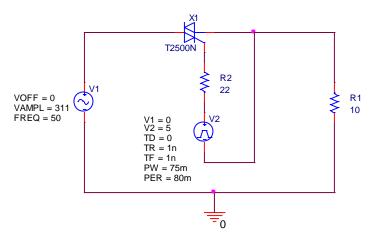


Figura 2 – Circuito para simulação.

Tabela 3 – Controle de carga resistiva por ciclos inteiros.

Parâmetro	Valor	
1 ciclo/4 ciclos (PW = 12m e PER = 80m)		
2 ciclos/4 ciclos (PW = 35m e PER = 80m)	Potência média na carga	
4 ciclos/4 ciclos (PW = 75 m e PER = 80 m)		
Características da carga		$R = 10 \Omega e P = 4,88 \text{ kW}$

Insira no circuito da figura 2 uma impedância de linha, representando as indutâncias e resistências de transformadores e condutores da rede, conforme mostrado na figura 3. Anote os valores solicitados na tabela 4.

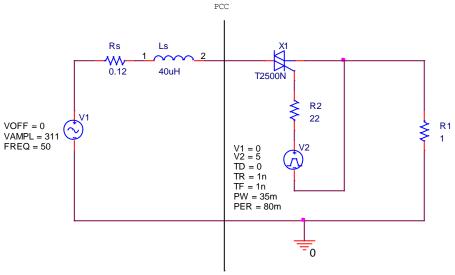


Figura 3 – Circuito para simulação.

Tabela 4 – Controle de carga resistiva por ciclos inteiros.

Parâmetro	Valor	
2 ciclos/4 ciclos (PW = 35m e PER = 80m)	Tensão eficaz no PCC com a carga ligada	
Características da carga		$R = 1 \Omega e P = 48.8 kW$

Com esta simulação se comprova que outras cargas conectadas ao ponto de conexão comum (PCC) podem sofrer a influência de circuitos controlados por ciclos inteiros.

4 GRADADOR MONOFÁSICO DE BAIXO CUSTO

Simule o circuito mostrado na figura 4 anotando os valores na tabela 5. Será necessário inserir o modelo do DIAC (diode for alternating current) no Orcad conforme instruções no arquivo fornecido pela ST.

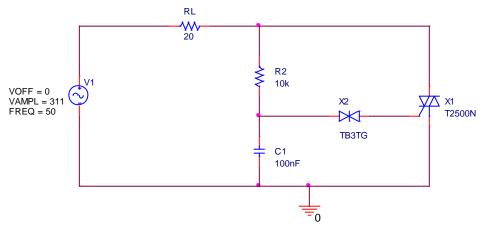


Figura 4 – Circuito para simulação.

Tabela 5 – Controle de carga resistiva por gradador de baixo custo.

Parâmetro		Valor
$R_2 = 10 \text{ k}\Omega$		
$R_2 = 270 \text{ k}\Omega$	Ângulo aproximado de condução do triac	
$R_2 = 510 \text{ k}\Omega$		
Características da carga		$R = 20 \Omega$

5 QUESTÕES

- a) Para o controle de uma carga de 50 W, puramente resistiva, você recomendaria qual forma de controle da potência nesta carga?
- b) Faça uma comparação, do ponto de vista da rede e de outras cargas, os conversores CA-CA com controle pelo ângulo de disparo de tiristores (gradador) e com controle por ciclos inteiros.
- c) Para uma carga de 10 kW resistiva, seria adequado aplicar o controle por ciclos inteiros? Justifique sua resposta.