INSTITUTO FEDERAL

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

CURSO TÉCNICO DE ELETRÔNICA

Eletrônica de Potência

AULA LAB 03 SEMICONDUTORES DE POTÊNCIA: BJT, MOSFET E IGBT

1 INTRODUÇÃO

Esta atividade de laboratório tem por objetivo exercitar o conteúdo estudado nesta aula (capítulo), especificamente sobre semicondutores de potência (BJT, MOSFET e IGBT).

Em síntese, objetiva-se:

- Testar semicondutores de potência;
- Implementar circuitos com transistores de potência;
- Entender o funcionamento de transistores de potência;
- Analisar os resultados obtidos e concluir a respeito.

2 MOSFETS DE POTÊNCIA

Obtenha na internet a folha de dados do MOSFET IRF 540.

A seguir, verifique se o MOSFET está em boas condições, utilizando o multímetro.

Em continuação, implemente o circuito mostrado na Figura 1, objetivando verificar o disparo e bloqueio do MOSFET.

Os elementos do circuito da Figura 1 são:

- $V_i = 15 V$;
- $R_1 = 680 \Omega$;
- $R_2 = 1 \text{ k}\Omega$;
- $R_3 = 33 \Omega$;
- $D_1 = LED$ comum;
- $M_1 = IRF 540$.

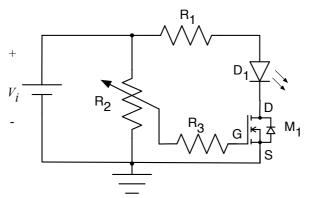


Figura 1 – Circuito para teste do MOSFET.

Ajustando o resistor R_2 , verifique a operação do MOSFET na região de corte, ôhmica e saturação.

Levante a curva da corrente de dreno (I_D) em função da tensão entre gatilho e fonte (V_{GS}) do MOSFET, anotando os valores na Tabela 1.

Trace a curva da corrente de dreno em função da tensão entre gatilho e fonte conforme a Figura 2.

Tabela 1 – Valores da corrente de dreno e tensão entre gatilho e fonte.

V _{GS} [V]	V _{DS} [V]	Corrente de dreno [mA]	Resistência calculada entre dreno e fonte [Ω]
0,0			
2,5			
2,6			
2,7			
2,8			
2,9			
3,0			
5,0			
10,0			
15,0			

Responda:

- 1) Qual a tensão de limiar do MOSFET?
- 2) O que pode ser concluído com relação à resistência do MOSFET entre dreno e fonte?
- 3) Determine a perda de condução do MOSFET.

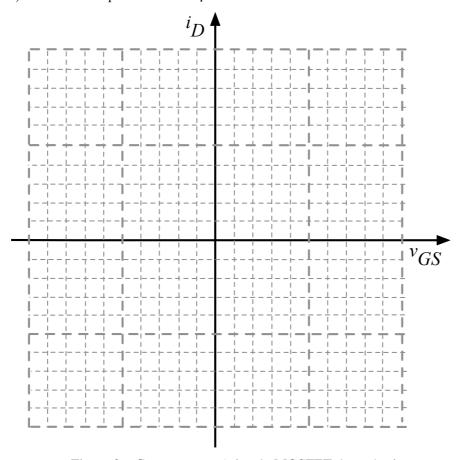


Figura 2 – Curva característica do MOSFET de potência.

3 RECUPERAÇÃO REVERSA DE DIODOS DE POTÊNCIA

Este circuito será demonstrado pelo professor, não é necessária sua montagem em aula. Implemente o circuito mostrado na Figura 3, que tem a finalidade de mostrar a recuperação reversa em diodos de potência. Verifique com o professor a demonstração do circuito.

Figura 3 – Circuito para verificar a recuperação reversa de diodos.