INSTITUTO F

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA

DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA

Eletrônica de Potência

AULA LAB 05 REFICADORES DE MEIA ONDA COM CARGA RESISTIVA

1 INTRODUÇÃO

Esta atividade de laboratório tem por objetivo exercitar o conteúdo estudado nesta aula (capítulo), especificamente sobre o estudo de conversores ca-cc (retificadores) de meia onda com carga resistiva pura.

Em síntese, objetiva-se:

- Simular retificadores monofásicos de meia onda com carga resistiva;
- Analisar retificadores monofásicos de meia onda com carga resistiva;
- Entender o funcionamento dos circuitos retificadores;
- Comparar os resultados de simulação com os valores calculados.

2 RETIFICADOR DE MEIA ONDA COM CARGA RESISTIVA

Implemente no simulador o circuito mostrado na figura 1. Tensão da fonte de alimentação (v_i) será de 21,1 V de pico. O resistor de carga (R_o) será de 10 Ω . O diodo D_1 será ideal.

Anote os valores simulados e calculados na tabela 1.

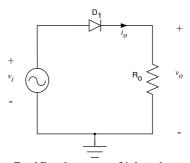


Figura 1 - Retificador monofásico de meia onda.

Tabela 1 – Resultados para o retificador de meia onda.

Variável	Descrição	Valor calculado	Valor simulado
$V_{o(pk)}$	Tensão de pico na carga		
$V_{o(avg)}$	Tensão média na carga		
$I_{o(pk)}$	Corrente de pico na carga		
$I_{o(avg)}$	Corrente média na carga		
P_o	Potência média na carga		

3 ANÁLISE DOS RESULTADOS

- 1) Esboce as formas de onda da tensão de entrada e de saída do retificador.
- 2) Os resultados obtidos na simulação condizem com os valores calculados?
- 3) Se o diodo D₁ fosse substituído por um diodo real, ocorre alteração na tensão de saída?
- 4) Determine o valor eficaz da tensão de saída.
- 5) Determine o valor eficaz da corrente de saída.