INSTITUTO F

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA

CURSO TÉCNICO DE ELETRÔNICA

Eletrônica de Potência

AULA LAB 17 CONVERSORES CC-CC: CONVERSORES INTEGRADOS

1 INTRODUÇÃO

Esta atividade de laboratório tem por objetivo exercitar o conteúdo estudado nesta aula (capítulo), especificamente sobre o estudo de conversores cc-cc do tipo Buck.

Em síntese, objetiva-se:

- Montar um conversor cc-cc chaveado;
- Observar as principais formas de onda do circuito;
- Comparar os resultados de laboratório com os valores calculados.

2 CONVERSOR CC-CC CHAVEADO

Localize na internet a folha de dados do circuito integrado LM1575 e utilize a mesma durante esta aula de laboratório para consulta.

Monte o conversor cc-cc integrado, conforme mostrado na figura 1.

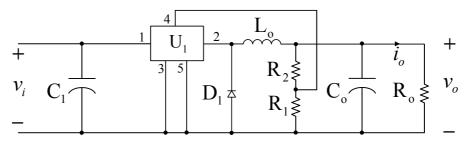


Figura 1 – Conversor cc-cc integrado.

Os elementos do circuito devem ser:

- Tensão de entrada (V_{in}) será de 15 V;
- O circuito integrado será o LM1575 ou equivalente;
- O diodo será o 1N4936;
- Indutor de filtro de 100 μH;
- Resistor de carga de 270 Ω .

Determine o valor dos resistores R₁ e R₂ do circuito da figura 1 para uma tensão de saída de 5

V.
$$R_1 =$$
______ $R_2 =$ ______

Determine o capacitor de saída considerando que a tensão média na entrada é da ordem de 15 V, a tensão de saída é de 5 V e o indutor é de 100 μH .

$$C_0 =$$

Adicione estes elementos ao circuito e verifique seu correto funcionamento.

Anote os valores calculados e medidos na tabela 1.

Tabela 1 – Conversor Buck cc-cc integrado.

Variável do circuito	Valores calculados	Valores medidos
Tensão média no capacitor C ₁		
Tensão média no terminal 2 de U ₁		
Tensão média na carga		
Tensão de pico no terminal 2 de U ₁		
Ondulação (ripple) de tensão na carga		

Meça a corrente na entrada e na saída do regulador chaveado, anotando os dados na tabela 2. Após isso, determine o rendimento da estrutura.

Tabela 2 – Rendimento do regulador chaveado.

Variável do circuito	Valores medidos/calculados
Tensão média no capacitor C ₁	
Corrente média na entrada do regulador	
Potência média na entrada	
Tensão média na carga	
Corrente média na carga	
Potência média na carga	
Rendimento da estrutura	

Esboce as formas de onda observadas no osciloscópio na figura 2 seguir.

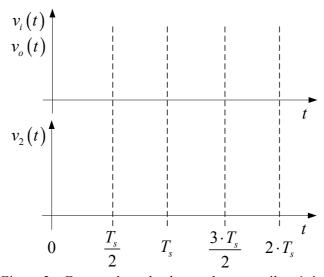


Figura 2 – Formas de onda observadas no osciloscópio.

3 ANÁLISE DOS RESULTADOS – COMENTE SUAS RESPOSTAS

- 1) O conversor está em condução contínua ou descontínua? Justifique sua resposta.
- 2) Comente a respeito dos valores calculados e medidos. Se ocorrerem diferenças, explique as razões para que isso tenha ocorrido.
- 3) Descreva as diferenças entre uma fonte que utiliza um regulador chaveado em relação àquelas que utilizam reguladores lineares.
- 4) Com relação ao LM1575, seria possível implementar uma fonte com saída de 3,3 V? Se for possível, o que precisaria ser alterado no circuito da figura 2 para isso?