UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA

EEL7040 – Circuitos Elétricos I - Laboratório

<u>AULA 02</u> VOLTÍMETRO E AMPERÍMETRO DE CORRENTE CONTÍNUA

1 INTRODUÇÃO

Na primeira aula de laboratório de circuitos elétricos foram estudados os multímetros analógicos e digitais e mediu-se tensão contínua com os mesmos. Naquele momento a maior preocupação era obter informações relevantes sobre as principais características e operação dos mesmos.

Na presente aula estes dois multímetros serão usados para medir tensões e correntes contínuas. Desta forma, deste ponto em diante teremos dois grandes objetivos em cada aula, quais sejam:

- Medidas elétricas;
- Circuitos elétricos.

Portanto, o estudante sempre deve ter em mente que as experiências serão realizadas com a finalidade de entender o funcionamento e operação dos instrumentos de medidas elétricas e, por outro lado, terão como objetivo comprovar experimentalmente a teoria de circuitos elétricos.

2 OBJETIVOS

- Introduzir as noções básicas sobre o voltímetro de C.C. e o amperímetro de C.C.:
- Dar ao aluno o conhecimento adequado para realizar medições de tensão e corrente;
- Permitir a comprovação prática da Lei das Malhas e da Lei dos Nós;
- Mostrar as não-idealidades dos instrumentos de medida;
- Dar conhecimento ao aluno sobre o erro de inserção em uma medida;
- Introduzir a noção do "limitador de corrente";
- Comprovar na prática os dados obtidos através da análise teórica.

3 MEDIÇÃO DE TENSÃO ELÉTRICA

3.1 Voltímetro de corrente contínua

Nesta etapa da experiência serão realizadas as medidas de tensão em alguns circuitos com a utilização do voltímetro de C.C., disponível no multímetro analógico ENGRO 484 e no multímetro digital DAWER DM2020.

O símbolo a ser utilizado para o voltímetro é definido na figura 1. Este instrumento, utilizado para medir tensões, deve ser sempre ligado em paralelo com os pontos (nós) onde se

deseja saber a diferença de potencial. Idealmente, o voltímetro não deve afetar o circuito a ser medido.

No entanto, na prática, ao inserirmos o voltímetro, este afeta o circuito, alterando o circuito equivalente. Isto se deve ao fato de ele apresentar uma resistência interna Rv de valor elevado, porém não infinito. Assim, o circuito equivalente será modificado com a inserção do voltímetro. O voltímetro com a sua resistência interna é representado na figura 2.

Figura 1 - Símbolo do voltímetro ideal.

Figura 2 - Símbolo do voltímetro com sua resistência interna associada.

Importante: o voltímetro deve sempre ser ligado em paralelo com os pontos onde se deseja saber a tensão.

3.2 Segunda Lei de Kirchhoff (Lei das Malhas)

O objetivo deste item é comprovar a 2ª Lei de Kirchhoff, denominada de Lei das Malhas.

Com o circuito da figura 3, inicialmente realizar os cálculos para determinar as tensões sobre cada elemento e entre os terminais **A** e **B**, conforme solicitado a seguir, e depois realizar as medidas necessárias para comprovar o estudo analítico realizado.

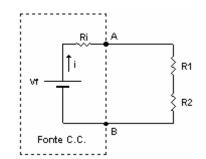


Figura 3 - Circuito a ser utilizado.

- V_f fonte de tensão de 15 V;
- R_i resistência interna da fonte;
- $R_1 = 1.2 \text{ k}\Omega \pm 5\% \text{ com}$ potência de 1/8 W;
- $R_2 = 510 \Omega \pm 5\%$ com potência de 1/8 W.

Com base no circuito da figura 3 determinar o que é solicitado abaixo.

- a. Calcular a tensão sobre cada elemento do circuito e sobre os terminais **A** e **B** e preencher os campos correspondentes da tabela 1;
- b. Calcular a corrente que circula pelo circuito;
- c. Calcular a potência dissipada em cada resistor ($P = R \cdot I^2$) e verificar se estes valores não ultrapassam os limites de potência máxima dissipada em cada resistor (1/8 W).

Com os valores obtidos nos cálculos do item anterior, utilizar a escala adequada de tensão para cada uma das medidas com o multímetro analógico ENGRO 484 e com o multímetro digital DAWER DM2020. Realizar as medidas separadamente, conforme a figura 4. Preencher os campos da tabela 1 adequadamente.

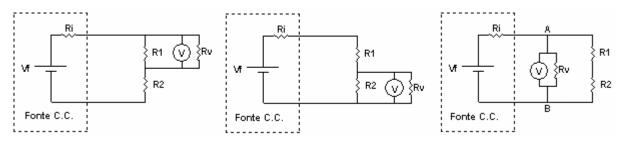


Figura 4 - Circuito para medição das tensões.

Tabela 1

Medidas	Medidas Valor teórico sem inserção		Valor medido Multímetro digital	
V_{R1}				
V_{R2}				
V_{AB}				

É importante sempre anotar a escala e o erro associado a cada medida.

Após a obtenção dos dados em laboratório, determinar:

- a. Calcule a faixa de tensões em cada um dos componentes do circuito, considerando a tolerância dos resistores R_1 e R_2 ($\pm 5\%$);
- b. Com os valores obtidos na prática, comprovar a 2ª Lei de Kirchhoff.

3.3 Erro de inserção na medição de tensão elétrica

Os valores das resistências do circuito anterior eram bem menores do que os valores das resistências internas dos voltímetros usados. Consequentemente, a inserção desses instrumentos não afeta os valores medidos.

Nesta etapa do trabalho temos o objetivo de determinar o erro de inserção do multímetro usando um circuito com valores adequados para isso.

O circuito para tal propósito é mostrado na figura 5 e para o mesmo determinar o que se pede a seguir.

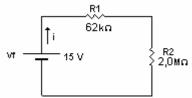


Figura 5 - Circuito para determinar o erro de inserção do voltímetro.

a. Calcule a tensão sobre cada um dos resistores e preencha seus valores na Tabela 2. Neste caso não é considerado o erro de inserção.

Com os valores obtidos nos cálculos do item anterior, utilizar a escala adequada de tensão para cada uma das medidas com o multímetro analógico ENGRO 484 e com o multímetro digital DAWER DM2020. Realizar as medidas separadamente, conforme a figura 6. Preencher os campos da tabela 2 adequadamente.

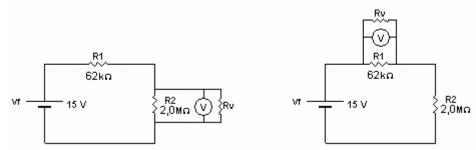


Figura 6 - Medidas a serem realizadas.

Tabela 2

Medidas	Valor teórico sem inserção	Valor teórico com inserção analógico digital		Valor medido Multímetro analógico	Valor medido Multímetro digital
V_{R1}					
V_{R2}					

É importante sempre anotar a escala e o erro associado a cada medida.

Após a obtenção dos dados em laboratório, determinar:

- a. Realize o cálculo das tensões em cada elemento do circuito da figura 5 considerando a inserção dos instrumentos e preencha as colunas adequadas da Tabela 2:
- b. Compare o erro de inserção do multímetro analógico e do digital;
- c. Compare o erro de inserção obtido na Tabela 1 com o obtido na Tabela 2;
- d. Comente a respeito dos resultados obtidos nesta parte do trabalho.

4 MEDIÇÃO DE CORRENTE ELÉTRICA

4.1 Amperímetro de corrente contínua

Nesta parte da experiência serão realizadas as medidas de corrente em alguns circuitos com a utilização do amperímetro de C.C., disponível no multímetro analógico ENGRO 484 e no multímetro digital DAWER DM2020.

O símbolo a ser utilizado para o amperímetro é definido na figura 7. Este instrumento, utilizado para medir correntes, deve ser sempre ligado em série com o elemento (ou elementos) no(s) qual(is) se deseja saber a corrente que circula. Idealmente, o amperímetro não deve afetar o circuito a ser medido.

No entanto, na prática, ao inserirmos o amperímetro, este afeta o circuito, alterando o circuito equivalente. Isto se deve ao fato de ele apresentar uma resistência interna *Ra* de valor reduzido, porém não nulo. Assim, o circuito equivalente será modificado com a inserção do amperímetro. O amperímetro com a sua resistência interna é representado na figura 8.

Figura 7 - Símbolo do amperímetro ideal.

Figura 8 - Símbolo do amperímetro com sua resistência interna associada.

Importante: o amperímetro deve sempre ser ligado em série com a malha onde se deseja saber a corrente que circula.

4.2 Primeira Lei de Kirchhoff (Lei das Correntes ou dos Nós)

O objetivo deste item é comprovar a 1ª Lei de Kirchhoff, denominada de Lei das Correntes ou de Lei dos Nós.

Com o circuito da figura 9, inicialmente realizar os cálculos para determinar as correntes em cada elemento do circuito e na fonte, conforme solicitado a seguir, e depois realizar as medidas necessárias para comprovar o estudo analítico realizado.

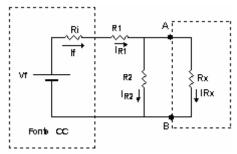


Figura 9 - Circuito a ser utilizado.

- *V_f* fonte de tensão de 15 V:
- R_i resistência interna da fonte:
- $R_1 = 12 \text{ k}\Omega \pm 5\% \text{ com}$ potência de 1/8 W;
- $R_2 = 120 \Omega \pm 5\%$ com potência de 1/8 W;
- $R_x = 1.2 \text{ k}\Omega \pm 5\% \text{ com}$ potência de 1/8 W.

Com base no circuito da figura 9 determinar o que é solicitado abaixo.

- a. Calcule a corrente em cada ramo do circuito e preencha os campos correspondentes na Tabela 3;
- b. Determinar a corrente máxima e mínima que será exigida da fonte $(I_f=I_{RI})$, independente do resistor R_x que for conectado aos terminais \mathbf{A} e \mathbf{B} . Verificar os casos extremos: curto-circuito entre \mathbf{A} e \mathbf{B} $(R_x=0)$ e circuito aberto entre \mathbf{A} e \mathbf{B} $(R_x\to\infty)$;
- c. Justificar a razão pela qual se pode chamar o circuito apresentado na figura 9 de limitador de corrente;
- d. Considerando os terminais $\bf A$ e $\bf B$ em aberto e que os resistores R_1 e R_2 podem apresentar uma variação de $\pm 5\%$ nos valores nominais de suas resistências, determine de maneira algébrica e numericamente a corrente máxima e mínima solicitada da fonte (I_f). Determine a variação desta corrente ($\Delta I_f = I_{f \max} I_{f \min}$).

Com os valores obtidos nos cálculos do item anterior, utilizar a escala adequada de corrente para cada uma das medidas com o multímetro analógico ENGRO 484 e com o multímetro digital DAWER DM2020. Realizar as medidas separadamente, conforme a figura 10. Preencher os campos da tabela 3 adequadamente.

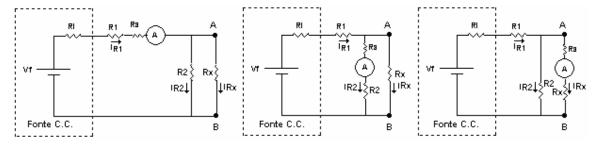


Figura 10 - Circuito para medição das correntes.

Tabela 3

	Medidas	Valor teórico sem inserção	Valor medido Multímetro analógico	Valor medido Multímetro digital	
ĺ	I_{R1}				
ĺ	I_{R2}				
ĺ	I_{Rx}				

É importante sempre anotar a escala e o erro associado a cada medida.

Após a obtenção dos dados em laboratório, determinar:

- a. Com os valores obtidos na Tabela 3 comprovar a 1ª Lei de Kirchhoff;
- b. Compare os valores obtidos para o erro de inserção dos multímetros analógico e digital.

4.3 Erro de inserção na medição de corrente elétrica

Com o circuito da figura 11 realizar a experiência para determinar o erro de inserção dos amperímetros analógico e digital.

Como estamos usando fontes com resistência interna muito baixa, o resistor de 50 Ω deve ser desconsiderado.

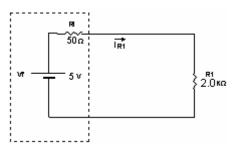


Figura 11 - Circuito para determinar o erro de inserção do amperímetro.

a. Calcule a corrente que circula no circuito e preencha seu valor na Tabela 4.

Com os valores obtidos nos cálculos do item anterior, utilizar a escala adequada de corrente para realizar as medidas com o multímetro analógico ENGRO 484 e com o multímetro digital DAWER DM2020. Realizar as medidas separadamente, conforme a figura 12. Preencher os campos da tabela 4 adequadamente.

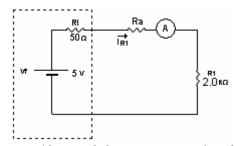


Figura 12 - Medidas a serem realizadas.

Tabela 4

Medidas	Valor teórico sem inserção	Valor teórico com inserção		Valor medido Multímetro	Valor medido Multímetro
		analógico	digital	analógico	digital
I_{R1}					

É importante sempre anotar a escala e o erro associado a cada medida.

Após a obtenção dos dados em laboratório, determinar:

- a. Realize o cálculo da corrente do circuito da figura 11 considerando a inserção do amperímetro e preencha a coluna correspondente na Tabela 4;
- b. Calcule o erro de inserção nas medidas realizadas usando a expressão:

$$\delta_{ins} = \left| \frac{X_s - X_c}{X_s} \right|$$
. 100 $X_s = \text{valor teórico sem inserção}$

 X_c = valor teórico com inserção

c. Comente a respeito dos resultados obtidos nos itens anteriores.

5 FOLHA DE DADOS (MEDIDAS DE TENSÃO) Data: ____/___ **Equipe** Aula: _____ Nome: ______ Assinatura: _____ Nome: _____ Assinatura: _____ Instrumentos utilizados Medidas _____ -----(corte aqui)----Aula: _____/___/___ **Equipe** Nome: ______ Assinatura: _____ Nome: Assinatura: **Instrumentos utilizados** Medidas ___

6 FOLHA DE DADOS (MEDIDAS DE CORRENTE) Data: ____/____ **Equipe** Aula: _____ Nome: ______ Assinatura: _____ Nome: Assinatura: **Instrumentos utilizados** Medidas -----(corte aqui)-----Aula: _____ Data: ____/____ **Equipe** Nome: Assinatura: Nome: ______ Assinatura: _____ Instrumentos utilizados Medidas _____